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£ Project Announcements

= Due date postponed: now due Sat 9/23 at 11:59pm
= Will be using Canvas for jar and write-up submission

= We will test as soon as this is set up
= |nvites will be sent to everyone (will announce)

= Extra jar submission of your best system

= No spot-checks for extra jar... feel free to use approximations

= |nstructions for submission will be added to website

= |f using open-address w/ long keys, try this hash:
= int hash = ((int) (key A (key >>> 32)) * 3875239);



p 3 Project Grading

= Late days: 5 total, use whenever

= But no credit for late submissions when you run out of late days!
= (Be carefull)

» Grading: Projects out of 10

= 6 Points: Successfully implemented what we asked

2 Points: Submitted a reasonable write-up

1 Point: Write-up is written clearly

1 Point: Substantially exceeded minimum metrics

Extra Credit: Did non-trivial extension to project



Source / Filter

= Articulation process:

The vocal cord vibrations
create harmonics

The mouth is an amplifier

Depending on shape of
mouth, some harmonics are
amplified more than others
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}fm Deconvolution / Liftering
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Eﬁ Deconvolution / Liftering
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E& Deconvolution / Liftering
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E& Deconvolution / Liftering
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Eﬁ Mel Freq. Cepstral Coefficients

= Do FFT to get spectral information
= Like the spectrogram we saw earlier

=  Apply Mel scaling (New)

= Models human ear; more sensitivity
in lower freqs

=  Approx linear below 1kHz, log above,
equal samples above and below 1kHz

= Take Log
= Do discrete cosine transform

Mels scale
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p 3 Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features
= 12 delta MFCC features
= 12 delta-delta MFCC features
= ] (log) frame energy
= ] delta (log) frame energy
= ] delta-delta (log frame energy)

= So each frame is represented by a 39D vector



Acoustic Model



Speech Model

Sound types

Acoustic
observations

Language
model

Acoustic
model

s000 [ Heaeis

lIIIlIlrllllll

PR P
_|_

||

H

|
N




Acoustic Model

Soy

llllll II'IIIIIII lllllllll

B ONOIOIOXOIONO
Acoustic

Acoustic model
observations

‘\

. k\ ;

~ \ I,
b ' RN

5000 -




E-f; HMMs for Continuous Observations

=  Before: discrete set of observations

4000

3500

= Now: feature vectors are real-valued

2500

= Solution 1: discretization

= Solution 2: continuous emissions
=  Gaussians
=  Multivariate Gaussians

20001

frequency of second formant/Hz

15001
=  Mixtures of multivariate Gaussians
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Vector Quantization

ldea: discretization

= Map MFCC vectors onto
discrete symbols

= Compute probabilities
just by counting

This is called vector
quantization or VQ

Not used for ASR any
more

But: useful to consider as
a starting point
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p 3 Gaussian Emissions

= VQis insufficient for top-
quality ASR
= Hard to cover high- 308.3

dimensional space with
codebook

= Moves ambiguity from the 608
model to the preprocessing

F, (Hz)

= |nstead: assume the
possible values of the
observation vectors are

normally distributed. 1210

: 3040 2188 1337 485.3
=  Represent the observation F, (Hz)

likelihood function as a
Gaussian?

909.6

From bartus.org/akustyk



Ef@ Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

P(x|p,0) = —/=exp (—(“72;‘5)2)

oV 2T

= P(x):

P(x) is highest here at mean

P(x) is low here, far from mean
P(x)




W Multivariate Gaussians

* |nstead of a single mean u and variance o2

P(z|p,0) = 0\/— eXp (_ (332_(,!;)2)

= Vector of means u and covariance matrix X

P(QZ‘[L, Z) — (QW)k/%|2|1/2 €XPp (—%(ZIZ o ﬂ)TZ_l(x o M))

= Usually assume diagonal covariance (!)
= Thisisn’t very true for FFT features, but is less bad for MFCC features



Gaussians: Size of X

u=1[0 0] i =[00]
= > = > = 0.6l > =2l
= As 2 becomes larger, Gaussian becomes more spread

out; as > becomes smaller, Gaussian more
compressed

Text and figures from Andrew Ng



E& Gaussians: Shape of 2
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= As we increase the off diagonal entries, more correlation between
value of x and value of y

Text and figures from Andrew Ng



¥

But we're not there yet

Single Gaussians may do a
bad job of modeling a
complex distribution in any
dimension

Even worse for diagonal
covariances

Solution: mixtures of
Gaussians
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W Mixtures of Gaussians

= Mixtures of Gaussians:

P($|/,L7;, EZ) — (27r)k/21|§37;|1/2 CXp (—%(Q} o 'ui)—rz’i_l(x B 'uz))
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From robots.ox.ac.uk http://www.itee.uq.edu.au/~comp4702



GMMs

Summary: each state has an emission
distribution P(x|s) (likelihood function)
parameterized by:

= M mixture weights
= M mean vectors of dimensionality D

=  Either M covariance matrices of DxD or M
Dx1 diagonal variance vectors

Like soft vector quantization after all

= Think of the mixture means as being
learned codebook entries

= Think of the Gaussian densities as a
learned codebook distance function

= Think of the mixture of Gaussians like a
multinomial over codes

= (Even more true given shared Gaussian
inventories... more soon)




State Model



W& State Transition Diagrams

= Bayes Net: HMM as a Graphical Model
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E& ASR Lexicon

@..’” @ '”.‘@ ORCACAORO
.8 n n
08 °‘ Word model for "on
Word model for "the"
20
.12 @
CROOZ0=0 D

Word model for "need" Word model for "I"

Figure: ] & M



W& Lexical State Structure
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Adding an LM
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Figure from Huang et al page 618



p 3 State Space

= State space must include
= Current word (|V| on order of 20K+)
= |ndex within current word (|L| on order of 5)
= E.g. (lec[t]ure) (though not in orthography!)

= Acoustic probabilities only depend on phone type
= E.g. P(x]|lec[t]ure) = P(x|t)

= From a state sequence, can read a word sequence



State Refinement



% Phones Aren’t Homogeneous

2000+

Frequency [Hz)

0.937203



W& Need to Use Subphones

Phone Model
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Figure: ] & M



E& A Word with Subphones




% Modeling phonetic context
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“Need” with triphone models
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#-n+iy n-iy+d iy—d+#

Figure: ] & M



g Lots of Triphones

= Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones
= Cross word models: need 54,400 triphones

" Need to generalize models, tie triphones



W& State Tying / Clustering

[Young, Odell, Woodland
1994] Initial set of untied states

How do we decide which
triphones to cluster
together?

Use phonetic features (or
‘broad phonetic classes’)
= Stop

= Nasal

= Fricative

= Sibilant

= Vowel

= |ateral

R-Liquid?

Tie states 1n each leaf node

Figure: ] & M



p 3 State Space

= State space now includes

* Current word: |W| is order 20K

= |ndexin current word: |L| is order 5
= Subphone position: 3

= E.g. (lec[t-mid]ure)

= Acoustic model depends on clustered phone context
= But this doesn’t grow the state space

" But, adding the LM context for trigram+ does
= (after the, lec[t-mid]ure)

= Thisis a real problem for decoding



Decoding



Inference Tasks

Most likely word sequence:
d - ae - d

Most likely state sequence:
dl'd6_d6'd4_ae5'ae2'ae3_aeo_d2'd2'd3'd7_d5



Viterbi Decoding

z <3 - ERYY: 3

Gt(St, St—1) = P(x¢|s¢)P(5¢|5¢—1)

Vi(8¢) = Iglaii ¢t(3t, St—1)Vt—1 (St—1)
t—

Figure: Enrique Benimeli



p 3 Viterbi Decoding

Figure: Enrique Benimeli



p 3 Emission Caching

= Problem: scoring all the P(x|s) values is too slow
= |dea: many states share tied emission models, so cache them

10050

Word model for "on"

Word model for "the"

d2 2 @
oo T

Word model for "need" Word model for "I"



p 3 Prefix Trie Encodings

= Problem: many partial-word states are indistinguishable

= Solution: encode word production as a prefix trie (with
pushed weights)

= A specific instance of minimizing weighted FSAs [Mohri, 94]

Figure: Aubert, 02



Beam Search

¥

"= Problem: trellis is too big to compute v(s) vectors

* |dea: most states are terrible, keep v(s) only for top states at

each time the ba.

the be.

- ~ the bi. - ~

the b. the ba.
the ma.

G

the m.
and then.

at then.

J

—
" |mportant: still dynamic programming; collapse equiv states

the me.
the mi.

then a.
then e.
theni.

the be.
the ma.

then a.




p 3 LM Factoring

" Problem: Higher-order n-grams explode the state space

= (One) Solution:
= Factor state space into (word index, Im history)
= Score unigram prefix costs while inside a word
= Subtract unigram cost and add trigram cost once word is complete




E& LM Reweighting

= Noisy channel suggests
P(z|w)P(w)
= |n practice, want to boost LM
P(z|w)P(w)®
= Also, good to have a “word bonus” to offset LM costs
P(z|w)P(w)®|w|”

= These are both consequences of broken independence
assumptions in the model



Training



% What Needs to be Learned?

"= Emissions: P(x | phone class)
= Xis MFCC-valued

* Transitions: P(state | prev state)
= |f between words, this is P(word | history)
= |finside words, this is P(advance | phone class)
= (Really a hierarchical model)



% Estimation from Aligned Data

= What if each time step was labeled with its (context-
dependent sub) phone?

/k/ /ae/ /ae/ /ae/ /t/

= Can estimate P(x|/ae/) as empirical mean and (co-)variance of
x's with label /ae/

= Problem: Don’t know alignment at the frame and phone level



p 3 Forced Alighment

= What if the acoustic model P(x|phone) was known?
= ... and also the correct sequences of words / phones

= Can predict the best alignment of frames to phones

“speech lab”

ssssssssppppeeeeeeetshshshshIIIIaeaeaebbbbb

| i
sooof Lshel _|_ il :
C FETHI u rnm.
,mtqm " ’

sttt
(848220883 BAMK

2 2|2

‘7-1
e

= Called “forced alignment”



p 3 Forced Alighment

= Create a new state space that forces the hidden variables to transition
through phones in the (known) order

= Still have uncertainty about durations
" |n this HMM, all the parameters are known
= Transitions determined by known utterance

= Emissions assumed to be known
= Minor detail: self-loop probabilities

= Just run Viterbi (or approximations) to get the best alignment



p 3 EM for Alignment

= |nput: acoustic sequences with word-level transcriptions

= We don’t know either the emission model or the frame
alignments

= Expectation Maximization (Hard EM for now)
= Alternating optimization

= |mpute completions for unlabeled variables (here, the states at each
time step)

= Re-estimate model parameters (here, Gaussian means, variances,
mixture ids)

= Repeat
= One of the earliest uses of EM!



b3 Soft EM

* Hard EM uses the best single completion

= Here, single best alignment

= Not always representative

= Certainly bad when your parameters are initialized and the alignments
are all tied

= Uses the count of various configurations (e.g. how many tokens of
/ae/ have self-loops)

= What we’d really like is to know the fraction of paths that

include a given completion
= E.g.0.32 of the paths align this frame to /p/, 0.21 align it to /ee/, etc.
= Formally want to know the expected count of configurations

= Key quantity: P(s, | x)



Computing Marginals

P(sy,x)

P(s¢lz) = Pl)

= sum of all paths through s at t
sum of all paths




Forward Scores

.'5.
o
5

’Ut(St) = Isnax vt—l(St—l)fbt(St—l, St)
t—1

ai(se) = Z ar—1(8¢—1)Pt(Se—1, S¢t)

St—1




Backward Scores

IBt(St) = Z 5t+1(8t+1)¢t(8t, 3t+1)

St+1




Total Scores

P(s¢,x) = oy(s¢)Be(st)

P(z) =) ai(s:)Bi(st)

= ar(stop)

= Po(start)



p 3 Fractional Counts

= Computing fractional (expected) counts
= Compute forward / backward probabilities
= For each position, compute marginal posteriors
= Accumulate expectations

= Re-estimate parameters (e.g. means, variances, self-loop
probabilities) from ratios of these expected counts



Ef; Staged Training and State Tying

(1) iy
= Creating CD phones:

NN
= Start with h ,do EM
wainng o e NS

t-iy+n t-1y+ng f1y+l s-1y+1

= Clone Gaussians into triphones N f) ¥ N1 ¥ N9 ¥ A ) ¥
= Build decision tree and cluster etc
Gaussi
aussians * * * ‘
@ !

= Clone and train mixtures
(GMMs)

= General idea:
= |ntroduce complexity gradually @ * * * *

= |nterleave constraint with
flexibility . ete




®£  Training Mixture Models

" |nput: wav files with unaligned transcriptions

" Forced alignment

= Computing the “Viterbi path” over the training data (where the
transcription is known) is called “forced alignment”

= We know which word string to assign to each observation sequence.
= We just don’t know the state sequence.

= So we constrain the path to go through the correct words (by using a
special example-specific language model)

= And otherwise run the Viterbi algorithm

= Result: aligned state sequence



EﬁState Tying

= Creating CD phones:
= Start with monophone, do EM
training
= Clone Gaussians into triphones

= Build decision tree and cluster
Gaussians

= Clone and train mixtures
(GMMs)

" General idea:

= |ntroduce complexity gradually

= |nterleave constraint with
flexibility
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E&Standard subphone/mixture HMM
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E& An Induced Model

Standard Model
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[Petrov, Pauls, and Klein, 07]



Ef; Hierarchical Split Training with EM

32.1%
Gan—+Coy>(are )" (o=~ 28.7%
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E& Refinement of the /ih/-phone




Eﬁ Refinement of the /ih/-phone




Eﬁ Refinement of the /ih/-phone
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HMM states per phone
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