# Algorithms for NLP



#### Speech Inference

Taylor Berg-Kirkpatrick – CMU

Slides: Dan Klein – UC Berkeley

### **Project Announcements**

- Due date postponed: now due Sat 9/23 at 11:59pm
- Will be using Canvas for jar and write-up submission
  - We will test as soon as this is set up
  - Invites will be sent to everyone (will announce)
- Extra jar submission of your best system
  - No spot-checks for extra jar... feel free to use approximations
- Instructions for submission will be added to website
- If using open-address w/ long keys, try this hash:
  - int hash = ((int) (key ^ (key >>> 32)) \* 3875239);



# **Project Grading**

- Late days: 5 total, use whenever
  - But no credit for late submissions when you run out of late days!
  - (Be careful!)
- Grading: Projects out of 10
  - 6 Points: Successfully implemented what we asked
  - 2 Points: Submitted a reasonable write-up
  - 1 Point: Write-up is written clearly
  - 1 Point: Substantially exceeded minimum metrics
  - Extra Credit: Did non-trivial extension to project

#### Source / Filter

#### Articulation process:

- The vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

















Graphs from Dan Ellis



### Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
  - Like the spectrogram we saw earlier
- Apply Mel scaling (New)
  - Models human ear; more sensitivity in lower freqs
  - Approx linear below 1kHz, log above, equal samples above and below 1kHz
- Take Log
- Do discrete cosine transform



[Graph: Wikipedia]



#### Final Feature Vector

- 39 (real) features per 10 ms frame:
  - 12 MFCC features
  - 12 delta MFCC features
  - 12 delta-delta MFCC features
  - 1 (log) frame energy
  - 1 delta (log) frame energy
  - 1 delta-delta (log frame energy)

So each frame is represented by a 39D vector

# **Acoustic Model**



# Speech Model



### **Acoustic Model**





#### **HMMs** for Continuous Observations

- Before: discrete set of observations
- Now: feature vectors are real-valued
- Solution 1: discretization
- Solution 2: continuous emissions
  - Gaussians
  - Multivariate Gaussians
  - Mixtures of multivariate Gaussians
- A state is progressively
  - Context independent subphone (~3 per phone)
  - Context dependent phone (triphones)
  - State tying of CD phone





### **Vector Quantization**

- Idea: discretization
  - Map MFCC vectors onto discrete symbols
  - Compute probabilities just by counting
- This is called vector quantization or VQ
- Not used for ASR any more
- But: useful to consider as a starting point







#### **Gaussian Emissions**

- VQ is insufficient for topquality ASR
  - Hard to cover highdimensional space with codebook
  - Moves ambiguity from the model to the preprocessing
- Instead: assume the possible values of the observation vectors are normally distributed.
  - Represent the observation likelihood function as a Gaussian?



# Gaussians for Acoustic Modeling

#### A Gaussian is parameterized by a mean and a variance:

$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$



#### Multivariate Gaussians

• Instead of a single mean  $\mu$  and variance  $\sigma^2$ :

$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Vector of means  $\mu$  and covariance matrix  $\Sigma$ 

$$P(x|\mu, \Sigma) = \frac{1}{(2\pi)^{k/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$

- Usually assume diagonal covariance (!)
  - This isn't very true for FFT features, but is less bad for MFCC features

### Gaussians: Size of $\Sigma$



• 
$$\mu = [0 \ 0]$$

$$\mu = [0 \ 0]$$

$$\mu = [0 \ 0]$$

$$\sum = 1$$

$$\Sigma = 0.61$$

$$\Sigma = 21$$

• As  $\Sigma$  becomes larger, Gaussian becomes more spread out; as  $\Sigma$  becomes smaller, Gaussian more compressed

# Gaussians: Shape of $\Sigma$



$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}; \quad .\Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

 As we increase the off diagonal entries, more correlation between value of x and value of y



### But we're not there yet

- Single Gaussians may do a bad job of modeling a complex distribution in any dimension
- Even worse for diagonal covariances
- Solution: mixtures of Gaussians



From openlearn.open.ac.uk



#### Mixtures of Gaussians

#### Mixtures of Gaussians:

$$P(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{k/2} |\Sigma_i|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_i)^{\top} \Sigma_i^{-1}(x - \mu_i)\right)$$

$$P(x|\mu, \Sigma, \mathbf{c}) = \sum_{i} c_i P(x|\mu_i, \Sigma_i)$$









#### **GMMs**

- Summary: each state has an emission distribution P(x|s) (likelihood function) parameterized by:
  - M mixture weights
  - M mean vectors of dimensionality D
  - Either M covariance matrices of DxD or M Dx1 diagonal variance vectors
- Like soft vector quantization after all
  - Think of the mixture means as being learned codebook entries
  - Think of the Gaussian densities as a learned codebook distance function
  - Think of the mixture of Gaussians like a multinomial over codes
  - (Even more true given shared Gaussian inventories... more soon)





# **State Model**

### State Transition Diagrams

Bayes Net: HMM as a Graphical Model



State Transition Diagram: Markov Model as a Weighted FSA





#### **ASR Lexicon**





#### Lexical State Structure





# Adding an LM



Figure from Huang et al page 618

### State Space

- State space must include
  - Current word (|V| on order of 20K+)
  - Index within current word (|L| on order of 5)
  - E.g. (lec[t]ure) (though not in orthography!)

- Acoustic probabilities only depend on phone type
  - E.g. P(x|lec[t]ure) = P(x|t)

From a state sequence, can read a word sequence

# **State Refinement**

# Phones Aren't Homogeneous





# Need to Use Subphones





# A Word with Subphones





# Modeling phonetic context





# "Need" with triphone models



#### Lots of Triphones

- Possible triphones: 50x50x50=125,000
- How many triphone types actually occur?
- 20K word WSJ Task (from Bryan Pellom)
  - Word internal models: need 14,300 triphones
  - Cross word models: need 54,400 triphones
- Need to generalize models, tie triphones



## State Tying / Clustering

- [Young, Odell, Woodland 1994]
- How do we decide which triphones to cluster together?
- Use phonetic features (or 'broad phonetic classes')
  - Stop
  - Nasal
  - Fricative
  - Sibilant
  - Vowel
  - lateral



Tie states in each leaf node

## State Space

- State space now includes
  - Current word: |W| is order 20K
  - Index in current word: |L| is order 5
  - Subphone position: 3
  - E.g. (lec[t-mid]ure)
- Acoustic model depends on clustered phone context
  - But this doesn't grow the state space
- But, adding the LM context for trigram+ does
  - (after the, lec[t-mid]ure)
  - This is a real problem for decoding

# Decoding

## Inference Tasks



### Most likely word sequence:

d - ae - d

### Most likely state sequence:

$$d_1$$
- $d_6$ - $d_6$ - $d_4$ - $ae_5$ - $ae_2$ - $ae_3$ - $ae_0$ - $d_2$ - $d_2$ - $d_3$ - $d_7$ - $d_5$ 



## Viterbi Decoding



$$\phi_t(s_t, s_{t-1}) = P(x_t|s_t)P(s_t|s_{t-1})$$

$$v_t(s_t) = \max_{s_{t-1}} \phi_t(s_t, s_{t-1}) v_{t-1}(s_{t-1})$$



# Viterbi Decoding



Figure: Enrique Benimeli

## **Emission Caching**

- Problem: scoring all the P(x|s) values is too slow
- Idea: many states share tied emission models, so cache them





## **Prefix Trie Encodings**

- Problem: many partial-word states are indistinguishable
- Solution: encode word production as a prefix trie (with pushed weights)





A specific instance of minimizing weighted FSAs [Mohri, 94]

Figure: Aubert, 02



### Beam Search

Problem: trellis is too big to compute v(s) vectors

Idea: most states are terrible, keep v(s) only for top states at

each time

the b.

the m.

and then.

at then.

the ba.

the be.

the bi.

the ma.

the me.

the mi.

then a.

then e.

then i.

the ba.

the be.

the ma.

then a.

Important: still dynamic programming; collapse equiv states

## LM Factoring

- Problem: Higher-order n-grams explode the state space
- (One) Solution:
  - Factor state space into (word index, Im history)
  - Score unigram prefix costs while inside a word
  - Subtract unigram cost and add trigram cost once word is complete



## LM Reweighting

Noisy channel suggests

In practice, want to boost LM

$$P(x|w)P(w)^{\alpha}$$

Also, good to have a "word bonus" to offset LM costs

$$P(x|w)P(w)^{\alpha}|w|^{\beta}$$

 These are both consequences of broken independence assumptions in the model

# Training



## What Needs to be Learned?



- Emissions: P(x | phone class)
  - X is MFCC-valued
- Transitions: P(state | prev state)
  - If between words, this is P(word | history)
  - If inside words, this is P(advance | phone class)
  - (Really a hierarchical model)



# Estimation from Aligned Data

What if each time step was labeled with its (contextdependent sub) phone?



- Can estimate P(x|/ae/) as empirical mean and (co-)variance of x's with label /ae/
- Problem: Don't know alignment at the frame and phone level

## Forced Alignment

- What if the acoustic model P(x|phone) was known?
  - ... and also the correct sequences of words / phones
- Can predict the best alignment of frames to phones

"speech lab"

### sssssssppppeeeeeetshshshllllaeaeaebbbbb



Called "forced alignment"

## Forced Alignment

 Create a new state space that forces the hidden variables to transition through phones in the (known) order



- Still have uncertainty about durations
- In this HMM, all the parameters are known
  - Transitions determined by known utterance
  - Emissions assumed to be known
  - Minor detail: self-loop probabilities
- Just run Viterbi (or approximations) to get the best alignment



## EM for Alignment

- Input: acoustic sequences with word-level transcriptions
- We don't know either the emission model or the frame alignments
- Expectation Maximization (Hard EM for now)
  - Alternating optimization
  - Impute completions for unlabeled variables (here, the states at each time step)
  - Re-estimate model parameters (here, Gaussian means, variances, mixture ids)
  - Repeat
  - One of the earliest uses of EM!

# Cov

## Soft EM

- Hard EM uses the best single completion
  - Here, single best alignment
  - Not always representative
  - Certainly bad when your parameters are initialized and the alignments are all tied
  - Uses the count of various configurations (e.g. how many tokens of /ae/ have self-loops)
- What we'd really like is to know the fraction of paths that include a given completion
  - E.g. 0.32 of the paths align this frame to /p/, 0.21 align it to /ee/, etc.
  - Formally want to know the expected count of configurations
  - Key quantity: P(s<sub>t</sub> | x)

## **Computing Marginals**



$$P(s_t|x) = \frac{P(s_t, x)}{P(x)}$$

= sum of all paths through s at t sum of all paths

## **Forward Scores**



$$v_t(s_t) = \max_{s_{t-1}} v_{t-1}(s_{t-1})\phi_t(s_{t-1}, s_t)$$

$$\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \phi_t(s_{t-1}, s_t)$$

## **Backward Scores**



$$\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \phi_t(s_t, s_{t+1})$$

## **Total Scores**



$$P(s_t, x) = \alpha_t(s_t)\beta_t(s_t)$$

$$P(x) = \sum_{s_t} \alpha_t(s_t)\beta_t(s_t)$$

$$= \alpha_T(\text{stop})$$

$$= \beta_0(\text{start})$$



### Fractional Counts

- Computing fractional (expected) counts
  - Compute forward / backward probabilities
  - For each position, compute marginal posteriors
  - Accumulate expectations
  - Re-estimate parameters (e.g. means, variances, self-loop probabilities) from ratios of these expected counts



## Staged Training and State Tying

#### Creating CD phones:

- Start with monophone, do EM training
- Clone Gaussians into triphones
- Build decision tree and cluster Gaussians
- Clone and train mixtures (GMMs)

#### General idea:

- Introduce complexity gradually
- Interleave constraint with flexibility





## Training Mixture Models

- Input: wav files with unaligned transcriptions
- Forced alignment
  - Computing the "Viterbi path" over the training data (where the transcription is known) is called "forced alignment"
  - We know which word string to assign to each observation sequence.
  - We just don't know the state sequence.
  - So we constrain the path to go through the correct words (by using a special example-specific language model)
  - And otherwise run the Viterbi algorithm
- Result: aligned state sequence



#### Creating CD phones:

- Start with monophone, do EM training
- Clone Gaussians into triphones
- Build decision tree and cluster Gaussians
- Clone and train mixtures (GMMs)

#### General idea:

- Introduce complexity gradually
- Interleave constraint with flexibility



# Standard subphone/mixture HMM



| HMM Baseline | 25.1%      |
|--------------|------------|
| Model        | Error rate |



## An Induced Model





# Hierarchical Split Training with EM





## Refinement of the /ih/-phone





# Refinement of the /ih/-phone





## Refinement of the /ih/-phone





# HMM states per phone

