
Speech	Inference
Taylor	Berg-Kirkpatrick	– CMU

Slides:	Dan	Klein	– UC	Berkeley

Algorithms	for	NLP



Project	Announcements
§ Due	date	postponed:	now	due	Sat	9/23	at	11:59pm

§ Will	be	using	Canvas	for	jar	and	write-up	submission
§ We	will	test	as	soon	as	this	is	set	up
§ Invites	will	be	sent	to	everyone	(will	announce)

§ Extra	jar	submission	of	your	best	system
§ No	spot-checks	for	extra	jar…	feel	free	to	use	approximations

§ Instructions	for	submission	will	be	added	to	website

§ If	using	open-address	w/	long	keys,	try	this	hash:
§ int hash = ((int) (key ^ (key >>> 32)) * 3875239);



Project	Grading
§ Late	days:	5	total,	use	whenever

§ But	no	credit	for	late	submissions	when	you	run	out	of	late	days!
§ (Be	careful!)

§ Grading:	Projects	out	of	10
§ 6	Points:	Successfully	implemented	what	we	asked
§ 2	Points:	Submitted	a	reasonable	write-up
§ 1	Point:	Write-up	is	written	clearly
§ 1	Point:	Substantially	exceeded	minimum	metrics
§ Extra	Credit:	Did	non-trivial	extension	to	project



Source	/	Filter	

§ Articulation	process:
§ The	vocal	cord	vibrations	

create	harmonics
§ The	mouth	is	an	amplifier
§ Depending	on	shape	of	

mouth,	some	harmonics	are	
amplified	more	than	others



Deconvolution /	Liftering
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Deconvolution /	Liftering

Graphs	from	Dan	Ellis

s = e � f

log(s) = log(e) + log(f)

IDFT(log(s))



Mel	Freq.	Cepstral Coefficients

§ Do	FFT	to	get	spectral	information
§ Like	the	spectrogram	we	saw	earlier

§ Apply	Mel	scaling	(New)
§ Models	human	ear;	more	sensitivity	

in	lower	freqs
§ Approx linear	below	1kHz,	log	above,	

equal	samples	above	and	below	1kHz

§ Take	Log
§ Do	discrete	cosine	transform

[Graph:	Wikipedia]



Final	Feature	Vector

§ 39	(real)	features	per	10	ms	frame:
§ 12	MFCC	features
§ 12	delta	MFCC	features
§ 12	delta-delta	MFCC	features
§ 1	(log)	frame	energy
§ 1	delta	(log)	frame	energy
§ 1	delta-delta	(log	frame	energy)

§ So	each	frame	is	represented	by	a	39D	vector



Acoustic	Model
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HMMs	for	Continuous	Observations

§ Before:	discrete	set	of	observations

§ Now:	feature	vectors	are	real-valued

§ Solution	1:	discretization
§ Solution	2:	continuous	emissions

§ Gaussians
§ Multivariate	Gaussians
§ Mixtures	of	multivariate	Gaussians

§ A	state	is	progressively
§ Context	independent	subphone (~3	per	

phone)
§ Context	dependent	phone	(triphones)
§ State	tying	of	CD	phone



Vector	Quantization

§ Idea:	discretization
§ Map	MFCC	vectors	onto	

discrete	symbols	
§ Compute	probabilities	

just	by	counting

§ This	is	called	vector	
quantization	or	VQ

§ Not	used	for	ASR	any	
more

§ But:	useful	to	consider	as	
a	starting	point



Gaussian	Emissions
§ VQ	is	insufficient	for	top-

quality	ASR
§ Hard	to	cover	high-

dimensional	space	with	
codebook

§ Moves	ambiguity	from	the	
model	to	the	preprocessing

§ Instead:	assume	the	
possible	values	of	the	
observation	vectors	are	
normally	distributed.
§ Represent	the	observation	

likelihood	function	as	a	
Gaussian?

From bartus.org/akustyk



Gaussians	for	Acoustic	Modeling

§ P(x):

P(x)

x

P(x) is highest here at mean

P(x) is low here, far from mean

A Gaussian is parameterized by a mean and a variance:



Multivariate	Gaussians
§ Instead	of	a	single	mean	µ and	variance	s2:

§ Vector	of	means	µ and	covariance	matrix	S

§ Usually	assume	diagonal	covariance	(!)
§ This	isn’t	very	true	for	FFT	features,	but	is	less	bad	for	MFCC	features



Gaussians:	Size	of	S

§ µ =	[0	0]											 µ =	[0	0]										 µ =	[0	0]	
§ S =	I	 S =	0.6I S =	2I
§ As	S becomes	larger,	Gaussian	becomes	more	spread	
out;	as	S becomes	smaller,	Gaussian	more	
compressed

Text	and	figures	from	Andrew	Ng



Gaussians:	Shape	of	S

§ As	we	increase	the	off	diagonal	entries,	more	correlation	between	
value	of	x	and	value	of	y

Text	and	figures	from	Andrew	Ng



But	we’re	not	there	yet

§ Single	Gaussians	may	do	a	
bad	job	of	modeling	a	
complex	distribution	in	any	
dimension

§ Even	worse	for	diagonal	
covariances

§ Solution:	mixtures	of	
Gaussians

From openlearn.open.ac.uk



Mixtures	of	Gaussians
§ Mixtures	of	Gaussians:

From	robots.ox.ac.uk http://www.itee.uq.edu.au/~comp4702



GMMs
§ Summary:	each	state	has	an	emission	

distribution	P(x|s)	(likelihood	function)	
parameterized	by:
§ M	mixture	weights
§ M	mean	vectors	of	dimensionality	D
§ Either	M covariance	matrices	of	DxD or	M	

Dx1	diagonal	variance	vectors

§ Like	soft	vector	quantization	after	all
§ Think	of	the	mixture	means	as	being	

learned	codebook	entries
§ Think	of	the	Gaussian	densities	as	a	

learned	codebook	distance	function
§ Think	of	the	mixture	of	Gaussians	like	a	

multinomial	over	codes
§ (Even	more	true	given	shared	Gaussian	

inventories… more	soon)



State	Model



State	Transition	Diagrams
§ Bayes	Net:	HMM	as	a	Graphical	Model

§ State	Transition	Diagram:	Markov	Model	as	a	Weighted	FSA

w w w
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ASR	Lexicon

Figure:	J	&	M



Lexical	State	Structure

Figure:	J	&	M



Adding	an	LM

Figure	from	Huang	et	al	page	618



State	Space
§ State	space	must	include

§ Current	word	(|V|	on	order	of	20K+)
§ Index	within	current	word	(|L|	on	order	of	5)
§ E.g.	(lec[t]ure)	(though	not	in	orthography!)

§ Acoustic	probabilities	only	depend	on	phone	type
§ E.g.	P(x|lec[t]ure)	=	P(x|t)

§ From	a	state	sequence,	can	read	a	word	sequence



State	Refinement



Phones	Aren’t	Homogeneous



Need	to	Use	Subphones

Figure:	J	&	M



A	Word	with	Subphones

Figure:	J	&	M



Modeling	phonetic	context

w	iy										r	iy													m	iy												n	iy



“Need”	with	triphone	models

Figure:	J	&	M



Lots	of	Triphones

§ Possible	triphones:	50x50x50=125,000

§ How	many	triphone	types	actually	occur?

§ 20K	word	WSJ	Task	(from	Bryan	Pellom)
§ Word	internal	models:		need	14,300	triphones
§ Cross	word	models:	need	54,400	triphones

§ Need	to	generalize	models,	tie	triphones



State	Tying	/	Clustering

§ [Young,	Odell,	Woodland	
1994]

§ How	do	we	decide	which	
triphones	to	cluster	
together?

§ Use	phonetic	features (or	
‘broad	phonetic	classes’)
§ Stop
§ Nasal
§ Fricative
§ Sibilant
§ Vowel
§ lateral

Figure:	J	&	M



State	Space
§ State	space	now	includes

§ Current	word:	|W|	is	order	20K
§ Index	in	current	word:	|L|	is	order	5
§ Subphone position:	3
§ E.g.	(lec[t-mid]ure)

§ Acoustic	model	depends	on	clustered	phone	context
§ But	this	doesn’t	grow	the	state	space

§ But,	adding	the	LM	context	for	trigram+	does
§ (after	the,	lec[t-mid]ure)
§ This	is	a	real	problem	for	decoding



Decoding



Inference	Tasks

Most	likely	word	sequence:
d							- ae												- d

Most	likely	state	sequence:		
d1-d6-d6-d4-ae5-ae2-ae3-ae0-d2-d2-d3-d7-d5



Viterbi	Decoding

Figure:	Enrique	Benimeli



Viterbi	Decoding

Figure:	Enrique	Benimeli



Emission	Caching
§ Problem:	scoring	all	the	P(x|s)	values	is	too	slow
§ Idea:	many	states	share	tied	emission	models,	so	cache	them



Prefix	Trie Encodings
§ Problem:	many	partial-word	states	are	indistinguishable
§ Solution:	encode	word	production	as	a	prefix	trie (with	

pushed	weights)

§ A	specific	instance	of	minimizing	weighted	FSAs	[Mohri,	94]
Figure:	Aubert,	02
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Beam	Search
§ Problem:	trellis	is	too	big	to	compute	v(s)	vectors
§ Idea:	most	states	are	terrible,	keep	v(s)	only	for	top	states	at	

each	time

§ Important:	still	dynamic	programming;	collapse	equiv states

the	b.

the	m.

and	then.

at	then.

the	ba.
the	be.
the	bi.

the	ma.
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then	e.
then	i.

the	ba.

the	be.

the	ma.

then	a.



LM	Factoring
§ Problem:	Higher-order	n-grams	explode	the	state	space
§ (One)	Solution:

§ Factor	state	space	into	(word	index,	lm	history)
§ Score	unigram	prefix	costs	while	inside	a	word
§ Subtract	unigram	cost	and	add	trigram	cost	once	word	is	complete
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LM	Reweighting
§ Noisy	channel	suggests

§ In	practice,	want	to	boost	LM

§ Also,	good	to	have	a	“word	bonus”	to	offset	LM	costs

§ These	are	both	consequences	of	broken	independence	
assumptions	in	the	model



Training



What	Needs	to	be	Learned?

§ Emissions:	P(x	|	phone	class)
§ X	is	MFCC-valued

§ Transitions:	P(state	|	prev state)
§ If	between	words,	this	is	P(word	|	history)
§ If	inside	words,	this	is	P(advance	|	phone	class)
§ (Really	a	hierarchical	model)

s s s

x x x



Estimation from	Aligned	Data
§ What	if	each	time	step	was	labeled	with	its	(context-

dependent	sub)	phone?

§ Can	estimate	P(x|/ae/)	as	empirical	mean	and	(co-)variance	of	
x’s	with	label	/ae/

§ Problem:	Don’t	know	alignment	at	the	frame	and	phone	level

/k/ /ae/ /ae/

x x x

/ae/ /t/

x x



Forced Alignment
§ What	if	the	acoustic	model	P(x|phone)	was	known?

§ …	and	also	the	correct	sequences	of	words	/	phones

§ Can	predict	the	best	alignment	of	frames	to	phones

§ Called	“forced	alignment”

ssssssssppppeeeeeeetshshshshllllaeaeaebbbbb

“speech lab”



Forced	Alignment
§ Create	a	new	state	space	that	forces	the	hidden	variables	to	transition	

through	phones	in	the	(known)	order

§ Still	have	uncertainty	about	durations

§ In	this	HMM,	all	the	parameters	are	known
§ Transitions	determined	by	known	utterance
§ Emissions	assumed	to	be	known
§ Minor	detail:	self-loop	probabilities

§ Just	run	Viterbi	(or	approximations)	to	get	the	best	alignment

/s/ /p/ /ee/ /ch/ /l/ /ae/ /b/



EM	for	Alignment
§ Input:	acoustic	sequences	with	word-level	transcriptions

§ We	don’t	know	either	the	emission	model	or	the	frame	
alignments

§ Expectation	Maximization	(Hard	EM	for	now)
§ Alternating	optimization
§ Impute	completions	for	unlabeled	variables	(here,	the	states	at	each	

time	step)
§ Re-estimate	model	parameters	(here,	Gaussian	means,	variances,	

mixture	ids)
§ Repeat
§ One	of	the	earliest	uses	of	EM!



Soft	EM
§ Hard	EM	uses	the	best	single	completion

§ Here,	single	best	alignment
§ Not	always	representative
§ Certainly	bad	when	your	parameters	are	initialized	and	the	alignments	

are	all	tied
§ Uses	the	count	of	various	configurations	(e.g.	how	many	tokens	of	

/ae/	have	self-loops)

§ What	we’d	really	like	is	to	know	the	fraction	of	paths	that	
include	a	given	completion
§ E.g.	0.32	of	the	paths	align	this	frame	to	/p/,	0.21	align	it	to	/ee/,	etc.
§ Formally	want	to	know	the	expected	count	of	configurations
§ Key	quantity:	P(st |	x)



Computing Marginals

= sum of all paths through s at t
sum of all paths



Forward	Scores



Backward Scores



Total	Scores



Fractional	Counts

§ Computing	fractional	(expected)	counts
§ Compute	forward	/	backward	probabilities
§ For	each	position,	compute	marginal	posteriors
§ Accumulate	expectations
§ Re-estimate	parameters	(e.g.	means,	variances,	self-loop	
probabilities)	from	ratios	of	these	expected	counts



Staged	Training	and	State	Tying

§ Creating	CD	phones:
§ Start	with	monophone,	do	EM	

training
§ Clone	Gaussians	into	triphones
§ Build	decision	tree	and	cluster	

Gaussians
§ Clone	and	train	mixtures	

(GMMs)

§ General	idea:
§ Introduce	complexity	gradually
§ Interleave	constraint	with	

flexibility



Training	Mixture	Models
§ Input:	wav	files	with	unaligned	transcriptions

§ Forced	alignment
§ Computing	the	“Viterbi	path”	over	the	training	data	(where	the	

transcription	is	known)	is	called	“forced	alignment”
§ We	know	which	word	string	to	assign	to	each	observation	sequence.
§ We	just	don’t	know	the	state	sequence.
§ So	we	constrain	the	path	to	go	through	the	correct	words	(by	using	a	

special	example-specific	language	model)
§ And	otherwise	run	the	Viterbi	algorithm

§ Result:	aligned	state	sequence



State	Tying

§ Creating	CD	phones:
§ Start	with	monophone,	do	EM	

training
§ Clone	Gaussians	into	triphones
§ Build	decision	tree	and	cluster	

Gaussians
§ Clone	and	train	mixtures	

(GMMs)

§ General	idea:
§ Introduce	complexity	gradually
§ Interleave	constraint	with	

flexibility



Standard	subphone/mixture	HMM

Temporal 
Structure

Gaussian
Mixtures

Model Error rate
HMM Baseline 25.1%



An	Induced	Model

Standard Model

Single 
Gaussians

Fully 
Connected

[Petrov, Pauls, and Klein, 07]



Hierarchical	Split	Training	with	EM

32.1%

28.7%

25.6%

HMM Baseline 25.1%
5 Split rounds 21.4%

23.9%



Refinement	of	the	/ih/-phone



Refinement	of	the	/ih/-phone



Refinement	of	the	/ih/-phone
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